UNISONIC TECHNOLOGIES CO., LTD

US201/US201A

Preliminary

CMOS IC

80mΩ, 500mA/1.1A HIGH-SIDE POWER SWITCHES WITH FLAG

DESCRIPTION

The UTC **US201/A** series are $80m\Omega$, 500mA for **US201** (1.1A for **US201A**) high-side power switches. There's internal single low voltage N-Channel MOSFET which makes it an ideal for all USB applications. This MOSFET should be driven by a charge pump circuitry inside. Its switch on resistance is as low as $80m\Omega$ which we know specially meets the drop voltage for USB applications.

The flag pin can output an open-drain fault flag to next controller.

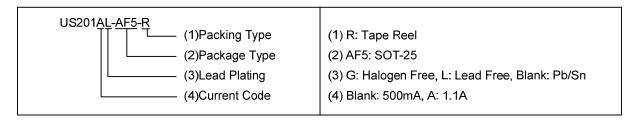
There're lots internal special ways for protecting the chip's

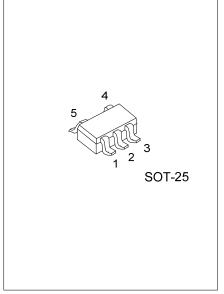
operation.

When in hot-plug events, there's large current which can create the upstream voltage droop to match the USB's voltage droop requirements and soft-start for isolating the power source.

As soon as the die temperature is higher than 130°C, the internal shutdown circuit will work.

Only when there's a normal input voltage in the V_{IN} pin, the UVLO (under-voltage lockout, 1.7V typ.) can make sure the chip is till in the off state


Because of the requirement of USB power the fault current should be ensured less than 800mA (UTC **US201**, single port) and 1.5A (UTC **US201A**, dual ports).

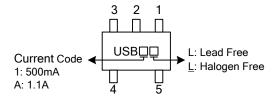

■ FEATURES

- * 80mΩ(typ) N-Channel MOSFET
- * Supply current:
 - Switch on :25µA(typ)
 - Switch off :1µA (typ)
- * Load current 500mA for US201 and 1.1A for US201A
- * Input voltage from 2V to 5.5V
- * In off-state: Output voltage can be higher than input

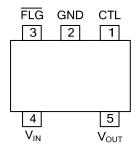
ORDERING INFORMATION

	Dookaga	Dooking			
Normal	Lead Free	Halogen Free	Package	Packing	
US201-AF5-R	US201L-AF5-R	US201G-AF5-R	SOT-25	Tape Reel	
US201A-AF5-R	US201AL-AF5-R	US201AG-AF5-R	SOT-25	Tape Reel	

Lead-free: US201L/US201AL Halogen-free:US201G/US201AG



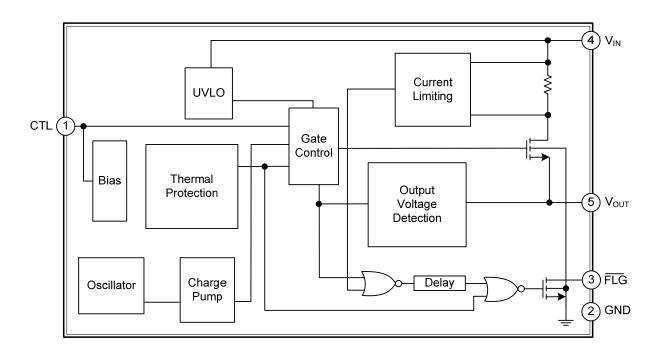
US201/US201A


Preliminary

CMOS IC

■ MARKING

■ PIN CONFIGURATION



■ PIN DESCRIPTION

PIN NO	PIN NAME	DESCRIPTION
1	CTL	High active
2	GND	Ground
3	FLG	Open-drain fault flag output
4	V _{IN}	Power input voltage
5	V _{OUT}	Output voltage

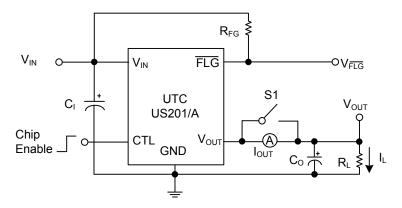
www.unisonic.com.tw 2 of

■ BLOCK DIAGRAM

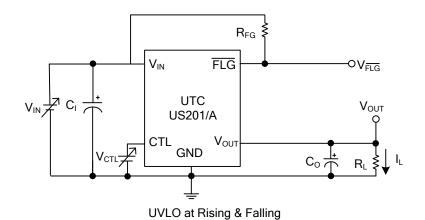
■ ABSOLUTE MAXIMUM RATING

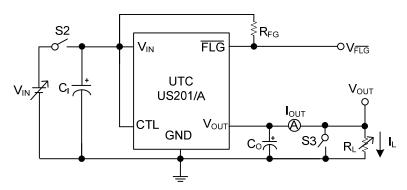
PARAMETER		SYMBOL	RATINGS	UNIT
Cumply Valtage		\ <u>/</u>	6.5	V
Supply Voltage	$V_{CC} = \begin{array}{c} 6.5 \\ +2 \sim +5.5 \text{ (Note 3)} \\ \hline CTL & V_{CTL} & -0.3 \sim +6.5 \\ \hline \hline P_{C} & 0.25 \\ \hline \hline V_{CTL} & 0.25 \\ \hline \hline V_{CTL} & 0.20 \sim +100 \text{ (Note 3)} \\ \hline \end{array}$	+2~ +5.5 (Note 3)	V	
	CTL	V	-0.3~ +6.5	V
Input/Output Pins		VCTL	0~ +5.5 (Note 3)	V
	FLG	V _{FLG}	6.5 V +2~ +5.5 (Note 3) V -0.3~ +6.5 V 0~ +5.5 (Note 3) V 6.5 V 0.25 W 150 °C	V
Power Dissipation (Ta=25°C)		P_D	0.25	W
Junction Temperature		T	150	$^{\circ}\mathbb{C}$
		IJ	-20~ +100 (Note 3)	$^{\circ}\mathbb{C}$
Storage Temperature		T _{STG}	-65~ +150	$^{\circ}\mathbb{C}$

- Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. Stresses listed as the "Absolute Maximum Ratings" will cause permanent damage to the device.
 - 3. The device is not guaranteed to function when it's beyond its operating conditions.

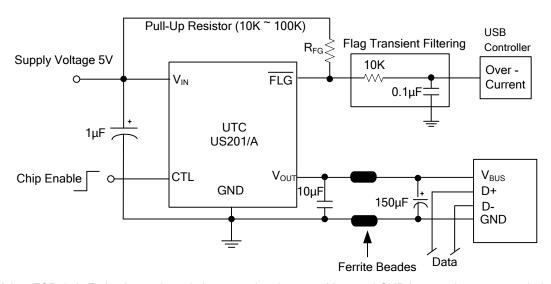

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction-to-Ambient	θ_{JA}	250	°C/W	


■ ELECTRICAL CHARACTERISTICS


PARAMETER		SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
ICII Inresnoid E	Logic-Low Voltage	V_{IL}	V _{IN} =2V~5.5V, Switch OFF				0.8	V
	Logic-High Voltage	V_{IH}	V _{IN} =2V~5.5V, Switch ON		2.0			V
Under-Voltage Lo	ockout	V_{UVLO}	V _{IN} increasing		1.3	1.7		V
Under-Voltage Hy	ysteresis	ΔV_{UVLO}	V _{IN} decreasing			0.1		V
Supply Current		I _{SW(ON)}	switch on, V _{OUT} =OPEN			25	45	μΑ
		I _{SW(OFF)}	switch off, V _{OUT} =OPEN			0.1	1	μΑ
CTL Input Curren	nt	I _{I(CTL)}	V _{CTL} =0V~5.5V			0.01		μΑ
Output Leakage (Current	I _{O(LEAK)}	V_{CTL} =0V, R_{LOAD} =0 Ω			0.5	10	μΑ
Commont Limeit		I _{LIMIT}	R_{LOAD} =1 Ω	US201	0.5	0.8	1.1	Α
Current Limit				US201A	1.1	1.5	2.0	Α
Ob Oi	I Da als Ossessat	I _{SC(FB)}	V _{OUT} =0V, measured prior	US201		0.8		Α
Short Circuit Fold	d-Back Current		to thermal shutdown	US201A		1.0		Α
Switch ON Resistance	40.00	Б	I _{OUT} = 500mA	US201		80	100	mΩ
Switch On Resis	lance	$R_{DS(ON)}$	I _{OUT} =1.1A	US201A		80	100	mΩ
FLAG OFF Curre	ent	FLG(OFF)	V _{FLG} =5V			0.01	1	μΑ
FLAG Output Res	sistance	RFLG	I _{SINK} =1mA			20	400	Ω
FLAG Delay Time	е	t_{D}	From fault condition to FLG assertion		2	10	15	ms
Output Turn-ON I	Rise Time	t _{ON(RISE)}	10% ~ 90% of V _{OUT} rising			400		μs
Thermal Shutdow	vn Protection	T_{SD}				130		$^{\circ}\mathbb{C}$
Thermal Shutdow	vn Hysteresis	ΔT_{SD}				20		$^{\circ}\!\mathbb{C}$

■ TEST CIRCUITS


Turn-On & Off Response, Flag Response

Current Limit vs. Input Voltage, Inrush Current Response, Current Limit Transient Response

■ TYPICAL APPLICATION CIRCUIT

Note. A low-ESR 150 μ F aluminum electrolytic or tantalum between V_{OUT} and GND is strongly recommended to meet the 330mV maximum droop requirement in the hub V_{BUS} .

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.